A survey of homozygous deletions in human cancer genomes.
نویسندگان
چکیده
Homozygous deletions of recessive cancer genes and fragile sites are known to occur in human cancers. We identified 281 homozygous deletions in 636 cancer cell lines. Of these deletions, 86 were homozygous deletions of known recessive cancer genes, 17 were of sequenced common fragile sites, and 178 were in genomic regions that do not overlap known recessive oncogenes or fragile sites ("unexplained" homozygous deletions). Some cancer cell lines have multiple homozygous deletions whereas others have none, suggesting intrinsic variation in the tendency to develop this type of genetic abnormality (P < 0.001). The 178 unexplained homozygous deletions clustered into 131 genomic regions, 27 of which exhibit homozygous deletions in more than one cancer cell line. This degree of clustering indicates that the genomic positions of the unexplained homozygous deletions are not randomly determined (P < 0.001). Many homozygous deletions, including those that are in multiple clusters, do not overlap known genes and appear to be in intergenic DNA. Therefore, to elucidate further the pathogenesis of homozygous deletions in cancer, we investigated the genome landscape within unexplained homozygous deletions. The gene count within homozygous deletions is low compared with the rest of the genome. There are also fewer short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and low-copy-number repeats (LCRs). However, DNA within homozygous deletions has higher flexibility. These features may signal the presence of currently unrecognized zones of susceptibility to DNA rearrangement. They may also reflect a tendency to reduce the adverse effects of homozygous deletions by minimizing the number of genes removed.
منابع مشابه
Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation.
We have developed a methodology we call ROMA (representational oligonucleotide microarray analysis), for the detection of the genomic aberrations in cancer and normal humans. By arraying oligonucleotide probes designed from the human genome sequence, and hybridizing with "representations" from cancer and normal cells, we detect regions of the genome with altered "copy number." We achieve an ave...
متن کاملHomozygous deletions of human chromosome 3p in lung tumors.
Cytogenetic and loss of heterozygosity (LOH) studies have demonstrated that deletions of chromosome 3p occur at a high frequency in all forms of lung cancer. To clarify the role of 3p in lung tumorigenesis and to more precisely identify targets for positional cloning efforts, we have performed 3p deletion analyses (microsatellite and fluorescence in situ hybridization) in a series of lung cance...
متن کاملHomozygous deletion map at 18q21.1 in pancreatic cancer.
Absolute genetic differences between neoplastic and nonneoplastic cells can be discerned at sites of homozygous deletions. These deletions are of critical interest because they might be useful in the identification of defective biochemical pathways in neoplastic cells, and subsequently for the development of new treatment strategies in human cancer. We identified an area at 18q21.1 involved by ...
متن کاملApplications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders
Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...
متن کاملLocalization of chromosome 9p homozygous deletions in glioma cell lines with markers constituting a continuous linkage group.
Southern blot analyses of the 9p-localized type I interferon (IFN) genes in DNAs obtained from malignant glioma cell lines and glial tumor tissue have indicated that homozygous deletions of the IFN-alpha and IFN-beta genes often occur during the development of the highly malignant central nervous system neoplasm, glioblastoma. We have applied a set of markers that span the IFN region on 9p to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 12 شماره
صفحات -
تاریخ انتشار 2005